(0) Obligation:
Clauses:
p(0).
p(s(X)) :- ','(q(X), ','(!, r)).
p(X) :- r.
q(0).
q(s(X)) :- ','(p(X), ','(!, r)).
q(X) :- r.
r.
Query: p(g)
(1) CutEliminatorProof (SOUND transformation)
Eliminated all cuts by simply ignoring them[PROLOG].
(2) Obligation:
Clauses:
p(0).
p(s(X)) :- ','(q(X), r).
p(X) :- r.
q(0).
q(s(X)) :- ','(p(X), r).
q(X) :- r.
r.
Query: p(g)
(3) PrologToPiTRSProof (SOUND transformation)
We use the technique of [TOCL09]. With regard to the inferred argument filtering the predicates were used in the following modes:
p_in: (b)
q_in: (b)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
p_in_g(0) → p_out_g(0)
p_in_g(s(X)) → U1_g(X, q_in_g(X))
q_in_g(0) → q_out_g(0)
q_in_g(s(X)) → U4_g(X, p_in_g(X))
p_in_g(X) → U3_g(X, r_in_)
r_in_ → r_out_
U3_g(X, r_out_) → p_out_g(X)
U4_g(X, p_out_g(X)) → U5_g(X, r_in_)
U5_g(X, r_out_) → q_out_g(s(X))
q_in_g(X) → U6_g(X, r_in_)
U6_g(X, r_out_) → q_out_g(X)
U1_g(X, q_out_g(X)) → U2_g(X, r_in_)
U2_g(X, r_out_) → p_out_g(s(X))
The argument filtering Pi contains the following mapping:
p_in_g(
x1) =
p_in_g(
x1)
0 =
0
p_out_g(
x1) =
p_out_g
s(
x1) =
s(
x1)
U1_g(
x1,
x2) =
U1_g(
x2)
q_in_g(
x1) =
q_in_g(
x1)
q_out_g(
x1) =
q_out_g
U4_g(
x1,
x2) =
U4_g(
x2)
U3_g(
x1,
x2) =
U3_g(
x2)
r_in_ =
r_in_
r_out_ =
r_out_
U5_g(
x1,
x2) =
U5_g(
x2)
U6_g(
x1,
x2) =
U6_g(
x2)
U2_g(
x1,
x2) =
U2_g(
x2)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(4) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
p_in_g(0) → p_out_g(0)
p_in_g(s(X)) → U1_g(X, q_in_g(X))
q_in_g(0) → q_out_g(0)
q_in_g(s(X)) → U4_g(X, p_in_g(X))
p_in_g(X) → U3_g(X, r_in_)
r_in_ → r_out_
U3_g(X, r_out_) → p_out_g(X)
U4_g(X, p_out_g(X)) → U5_g(X, r_in_)
U5_g(X, r_out_) → q_out_g(s(X))
q_in_g(X) → U6_g(X, r_in_)
U6_g(X, r_out_) → q_out_g(X)
U1_g(X, q_out_g(X)) → U2_g(X, r_in_)
U2_g(X, r_out_) → p_out_g(s(X))
The argument filtering Pi contains the following mapping:
p_in_g(
x1) =
p_in_g(
x1)
0 =
0
p_out_g(
x1) =
p_out_g
s(
x1) =
s(
x1)
U1_g(
x1,
x2) =
U1_g(
x2)
q_in_g(
x1) =
q_in_g(
x1)
q_out_g(
x1) =
q_out_g
U4_g(
x1,
x2) =
U4_g(
x2)
U3_g(
x1,
x2) =
U3_g(
x2)
r_in_ =
r_in_
r_out_ =
r_out_
U5_g(
x1,
x2) =
U5_g(
x2)
U6_g(
x1,
x2) =
U6_g(
x2)
U2_g(
x1,
x2) =
U2_g(
x2)
(5) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
P_IN_G(s(X)) → U1_G(X, q_in_g(X))
P_IN_G(s(X)) → Q_IN_G(X)
Q_IN_G(s(X)) → U4_G(X, p_in_g(X))
Q_IN_G(s(X)) → P_IN_G(X)
P_IN_G(X) → U3_G(X, r_in_)
P_IN_G(X) → R_IN_
U4_G(X, p_out_g(X)) → U5_G(X, r_in_)
U4_G(X, p_out_g(X)) → R_IN_
Q_IN_G(X) → U6_G(X, r_in_)
Q_IN_G(X) → R_IN_
U1_G(X, q_out_g(X)) → U2_G(X, r_in_)
U1_G(X, q_out_g(X)) → R_IN_
The TRS R consists of the following rules:
p_in_g(0) → p_out_g(0)
p_in_g(s(X)) → U1_g(X, q_in_g(X))
q_in_g(0) → q_out_g(0)
q_in_g(s(X)) → U4_g(X, p_in_g(X))
p_in_g(X) → U3_g(X, r_in_)
r_in_ → r_out_
U3_g(X, r_out_) → p_out_g(X)
U4_g(X, p_out_g(X)) → U5_g(X, r_in_)
U5_g(X, r_out_) → q_out_g(s(X))
q_in_g(X) → U6_g(X, r_in_)
U6_g(X, r_out_) → q_out_g(X)
U1_g(X, q_out_g(X)) → U2_g(X, r_in_)
U2_g(X, r_out_) → p_out_g(s(X))
The argument filtering Pi contains the following mapping:
p_in_g(
x1) =
p_in_g(
x1)
0 =
0
p_out_g(
x1) =
p_out_g
s(
x1) =
s(
x1)
U1_g(
x1,
x2) =
U1_g(
x2)
q_in_g(
x1) =
q_in_g(
x1)
q_out_g(
x1) =
q_out_g
U4_g(
x1,
x2) =
U4_g(
x2)
U3_g(
x1,
x2) =
U3_g(
x2)
r_in_ =
r_in_
r_out_ =
r_out_
U5_g(
x1,
x2) =
U5_g(
x2)
U6_g(
x1,
x2) =
U6_g(
x2)
U2_g(
x1,
x2) =
U2_g(
x2)
P_IN_G(
x1) =
P_IN_G(
x1)
U1_G(
x1,
x2) =
U1_G(
x2)
Q_IN_G(
x1) =
Q_IN_G(
x1)
U4_G(
x1,
x2) =
U4_G(
x2)
U3_G(
x1,
x2) =
U3_G(
x2)
R_IN_ =
R_IN_
U5_G(
x1,
x2) =
U5_G(
x2)
U6_G(
x1,
x2) =
U6_G(
x2)
U2_G(
x1,
x2) =
U2_G(
x2)
We have to consider all (P,R,Pi)-chains
(6) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
P_IN_G(s(X)) → U1_G(X, q_in_g(X))
P_IN_G(s(X)) → Q_IN_G(X)
Q_IN_G(s(X)) → U4_G(X, p_in_g(X))
Q_IN_G(s(X)) → P_IN_G(X)
P_IN_G(X) → U3_G(X, r_in_)
P_IN_G(X) → R_IN_
U4_G(X, p_out_g(X)) → U5_G(X, r_in_)
U4_G(X, p_out_g(X)) → R_IN_
Q_IN_G(X) → U6_G(X, r_in_)
Q_IN_G(X) → R_IN_
U1_G(X, q_out_g(X)) → U2_G(X, r_in_)
U1_G(X, q_out_g(X)) → R_IN_
The TRS R consists of the following rules:
p_in_g(0) → p_out_g(0)
p_in_g(s(X)) → U1_g(X, q_in_g(X))
q_in_g(0) → q_out_g(0)
q_in_g(s(X)) → U4_g(X, p_in_g(X))
p_in_g(X) → U3_g(X, r_in_)
r_in_ → r_out_
U3_g(X, r_out_) → p_out_g(X)
U4_g(X, p_out_g(X)) → U5_g(X, r_in_)
U5_g(X, r_out_) → q_out_g(s(X))
q_in_g(X) → U6_g(X, r_in_)
U6_g(X, r_out_) → q_out_g(X)
U1_g(X, q_out_g(X)) → U2_g(X, r_in_)
U2_g(X, r_out_) → p_out_g(s(X))
The argument filtering Pi contains the following mapping:
p_in_g(
x1) =
p_in_g(
x1)
0 =
0
p_out_g(
x1) =
p_out_g
s(
x1) =
s(
x1)
U1_g(
x1,
x2) =
U1_g(
x2)
q_in_g(
x1) =
q_in_g(
x1)
q_out_g(
x1) =
q_out_g
U4_g(
x1,
x2) =
U4_g(
x2)
U3_g(
x1,
x2) =
U3_g(
x2)
r_in_ =
r_in_
r_out_ =
r_out_
U5_g(
x1,
x2) =
U5_g(
x2)
U6_g(
x1,
x2) =
U6_g(
x2)
U2_g(
x1,
x2) =
U2_g(
x2)
P_IN_G(
x1) =
P_IN_G(
x1)
U1_G(
x1,
x2) =
U1_G(
x2)
Q_IN_G(
x1) =
Q_IN_G(
x1)
U4_G(
x1,
x2) =
U4_G(
x2)
U3_G(
x1,
x2) =
U3_G(
x2)
R_IN_ =
R_IN_
U5_G(
x1,
x2) =
U5_G(
x2)
U6_G(
x1,
x2) =
U6_G(
x2)
U2_G(
x1,
x2) =
U2_G(
x2)
We have to consider all (P,R,Pi)-chains
(7) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 10 less nodes.
(8) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
P_IN_G(s(X)) → Q_IN_G(X)
Q_IN_G(s(X)) → P_IN_G(X)
The TRS R consists of the following rules:
p_in_g(0) → p_out_g(0)
p_in_g(s(X)) → U1_g(X, q_in_g(X))
q_in_g(0) → q_out_g(0)
q_in_g(s(X)) → U4_g(X, p_in_g(X))
p_in_g(X) → U3_g(X, r_in_)
r_in_ → r_out_
U3_g(X, r_out_) → p_out_g(X)
U4_g(X, p_out_g(X)) → U5_g(X, r_in_)
U5_g(X, r_out_) → q_out_g(s(X))
q_in_g(X) → U6_g(X, r_in_)
U6_g(X, r_out_) → q_out_g(X)
U1_g(X, q_out_g(X)) → U2_g(X, r_in_)
U2_g(X, r_out_) → p_out_g(s(X))
The argument filtering Pi contains the following mapping:
p_in_g(
x1) =
p_in_g(
x1)
0 =
0
p_out_g(
x1) =
p_out_g
s(
x1) =
s(
x1)
U1_g(
x1,
x2) =
U1_g(
x2)
q_in_g(
x1) =
q_in_g(
x1)
q_out_g(
x1) =
q_out_g
U4_g(
x1,
x2) =
U4_g(
x2)
U3_g(
x1,
x2) =
U3_g(
x2)
r_in_ =
r_in_
r_out_ =
r_out_
U5_g(
x1,
x2) =
U5_g(
x2)
U6_g(
x1,
x2) =
U6_g(
x2)
U2_g(
x1,
x2) =
U2_g(
x2)
P_IN_G(
x1) =
P_IN_G(
x1)
Q_IN_G(
x1) =
Q_IN_G(
x1)
We have to consider all (P,R,Pi)-chains
(9) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(10) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
P_IN_G(s(X)) → Q_IN_G(X)
Q_IN_G(s(X)) → P_IN_G(X)
R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains
(11) PiDPToQDPProof (EQUIVALENT transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(12) Obligation:
Q DP problem:
The TRS P consists of the following rules:
P_IN_G(s(X)) → Q_IN_G(X)
Q_IN_G(s(X)) → P_IN_G(X)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(13) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- Q_IN_G(s(X)) → P_IN_G(X)
The graph contains the following edges 1 > 1
- P_IN_G(s(X)) → Q_IN_G(X)
The graph contains the following edges 1 > 1
(14) YES